Formula One |
---|
Construction
Chassis design
The modern-day Formula One cars are constructed from composites of carbon fibre and similar ultra-lightweight materials. The minimum weight permissible is 702 kg (1,548 lb) including the driver but not fuel. Cars are weighed with dry-weather tyres fitted.[2] Prior to the 2014 F1 season, cars often weighed in under this limit so teams added ballast in order to add weight to the car. The advantage of using ballast is that it can be placed anywhere in the car to provide ideal weight distribution. This can help lower the car's centre of gravity to improve stability and also allows the team to fine-tune the weight distribution of the car to suit individual circuits.Engines
Main article: Formula One engines
A Renault RS26 V8 engine, which powered the 2006 Renault R26
The BMW M12/13, a massively powerful 4-cylinder 1.5-litre turbo that powered the Brabham-BMW cars in the 1980s developed 1400 bhp power during qualifying.[citation needed]
The BRM H16 engine, tough but not successful was a 16-cylinder 64-valve engine that powered the BRM team
For a decade F1 cars had run with 3.0-litre naturally aspirated V10 engines; however, development had led to these engines producing between 980 and 1,000 hp (730 and 750 kW), and[citation needed].[4] Teams started using exotic alloys in the late 1990s, leading to the FIA banning the use of exotic materials in engine construction, and only aluminium, titanium and iron alloys were allowed for the pistons, cylinders, connecting rods, and crankshafts.[3] The FIA has continually enforced material and design restrictions to limit power. Even with the restrictions the V10s in the 2005 season were reputed to develop 980 hp (730 kW), which were reaching power levels not seen since the ban on turbo-charged engines in 1989.[4]
The lesser funded teams (the former Minardi team spends less than 50 million, while Ferrari spent hundreds of millions of euros a year developing their car) had the option of keeping the current V10 for another season, but with a rev limiter to keep them from being competitive with the most powerful V8 engines. The only team to take this option was the Toro Rosso team, which was the reformed and regrouped Minardi.
The engines consume around 450 l (15.9 ft3) of air per second.[5] Race fuel consumption rate is normally around 75 l/100 km travelled (3.1 US mpg, 3.8 imp mpg, 1.3 km/l).
All cars have the engine located between the driver and the rear axle. The engines are a stressed member in most cars, meaning that the engine is part of the structural support framework, being bolted to the cockpit at the front end, and transmission and rear suspension at the back end.
In the 2004 championship, engines were required to last a full race weekend. For the 2005 championship, they were required to last two full race weekends and if a team changes an engine between the two races, they incur a penalty of 10 grid positions. In 2007, this rule was altered slightly and an engine only had to last for Saturday and Sunday running. This was to promote Friday running. In the 2008 season, engines were required to last two full race weekends; the same regulation as the 2006 season. However, for the 2009 season, each driver is allowed to use a maximum of 8 engines over the season, meaning that a couple of engines have to last three race weekends. This method of limiting engine costs also increases the importance of tactics, since the teams have to choose which races to have a new or an already-used engine.
As of the 2014 season, all F1 cars have been equipped with turbocharged 1.6-litre V6 engines. Turbochargers have been banned since 1988. This change may give an improvement of up to 29% fuel efficiency.[6] One of the many reasons that Mercedes dominated the season early, was due to the placement of the turbocharger's compressor at one side of the engine, and the turbine at the other; both were then linked by a shaft travelling through the vee of the engine. The benefit is that air is not traveling through as much pipework, in turn reducing turbo lag and increases efficiency of the car. In addition, it means that the air moving through the compressor is much cooler as it is further away from the hot turbine section.[7]
Transmission
The gearbox with mounted rear suspension elements from the Lotus T127, Lotus Racing's car for the 2010 season.
A modern F1 clutch is a multi-plate carbon design with a diameter of less than 100 mm (3.9 in),[11] weighing less than 1 kg (2.2 lb) and handling around 720 hp (540 kW).[4] As of the 2009 race season, all teams are using seamless shift transmissions, which allow almost instantaneous changing of gears with minimum loss of drive. Shift times for Formula One cars are in the region of 0.05 seconds.[12] In order to keep costs low in Formula One, gearboxes must last five consecutive events and since 2015, gearbox ratios will be fixed for each season (for 2014 they could be changed only once). Changing a gearbox before the allowed time will cause a penalty of five places drop on the starting grid for the first event that the new gearbox is used.[13]
Aerodynamics
The streamlined body of a 1954 Ferrari 553 F1
The 1979 Lotus 80 was designed to take ground effect as far as possible
The aerodynamic designer has two primary concerns: the creation of downforce, to help push the car's tyres onto the track and improve cornering forces; and minimising the drag that gets caused by turbulence and acts to slow the car down.
Several teams started to experiment with the now familiar wings in the late 1960s. Race car wings operate on the same principle as aircraft wings, but are configured to cause a downward force rather than an upward one. A modern Formula One car is capable of developing 6 g lateral cornering force[14] (six times its own weight) thanks to aerodynamic downforce. The aerodynamic downforce allowing this is typically greater than the weight of the car. That means that, theoretically, at high speeds they could drive on the upside down surface of a suitable structure; e.g. on the ceiling.
Early experiments with movable wings and high mountings led to some spectacular accidents, and for the 1970 season regulations were introduced to limit the size and location of wings. Having evolved over time, similar rules are still used today.
In the late 1960s, Jim Hall of Chaparral first introduced 'ground effect' downforce to auto racing. In the mid 1970s, Lotus engineers found out that the entire car could be made to act like a giant wing by the creation of an airfoil surface on its underside which would cause air moving relative to the car to push it to the road. Applying another idea of Jim Hall's from his Chaparral 2J sports racer, Gordon Murray designed the Brabham BT46B, which used a separately-powered fan system to extract air from the skirted area under the car, creating enormous downforce. After technical challenges from other teams, it was withdrawn after a single race. Rule changes then followed to limit the benefits of 'ground effects' - firstly a ban on the skirts used to contain the low pressure area, later a requirement for a 'stepped floor'.
The McLaren MP4-21's rear engine cover designed to direct airflow towards the rear wing
Every single surface of a modern Formula One car, from the shape of the suspension links to that of the driver's helmet - has its aerodynamic effects considered. Disrupted air, where the flow 'separates' from the body, creates turbulence which creates drag - which slows the car down. Look at a recent car and you will see that almost as much effort has been spent reducing drag as increasing downforce - from the vertical end-plates fitted to wings to prevent vortices forming to the diffuser plates mounted low at the back, which help to re-equalise pressure of the faster-flowing air that has passed under the car and would otherwise create a low-pressure 'balloon' dragging at the back. Despite this, designers can't make their cars too 'slippery', as a good supply of airflow has to be ensured to help dissipate the vast amounts of heat produced by the engine and brakes.
In recent years, most Formula One teams have tried to emulate Ferrari's 'narrow waist' design, where the rear of the car is made as narrow and low as possible. This reduces drag and maximises the amount of air available to the rear wing. The 'barge boards' fitted to the sides of cars also helped to shape the flow of the air and minimise the amount of turbulence.
Revised regulations introduced in 2005 forced the aerodynamicists to be even more ingenious. In a bid to cut speeds, the FIA robbed the cars of a chunk of downforce by raising the front wing, bringing the rear wing forward and modifying the rear diffuser profile. The designers quickly clawed back much of the loss, with a variety of intricate and novel solutions such as the 'horn' winglets first seen on the McLaren MP4-20. Most of those innovations were effectively outlawed under even more stringent aero regulations imposed by the FIA for 2009. The changes were designed to promote overtaking by making it easier for a car to closely follow another. The new rules took the cars into another new era, with lower and wider front wings, taller and narrower rear wings, and generally much 'cleaner' bodywork. Perhaps the most interesting change, however, was the introduction of 'moveable aerodynamics', with the driver able to make limited adjustments to the front wing from the cockpit during a race.
That was usurped for 2011 by the new DRS (Drag Reduction System) rear wing system. This too allows drivers to make adjustments, but the system's availability is electronically governed - originally it could be used at any time in practice and qualifying (unless a driver is on wet-weather tyres), but during the race could only be activated when a driver is less than one second behind another car at pre-determined points on the track. (From 2013 DRS is available only at the pre-determined points during all sessions). The system is then deactivated once the driver brakes. The system "stalls" the rear wing by opening a flap, which leaves a 50mm horizontal gap in the wing, thus massively reducing drag and allowing higher top speeds, but also reducing downforce so it is normally used on longer straight track sections or sections which do not require high downforce. The system was introduced to promote more overtaking and it has become frequent to be a cause of overtaking on straights or at the end of straights where overtaking is encouraged in the following corner(s). However, the reception of the DRS system has differed among drivers, fans and specialists. Former Formula 1 driver Robert Kubica has been quoted of saying he "has not seen any overtaking moves in Formula 1 for two years",[citation needed] suggesting that the DRS is an unnatural way to pass cars on track but it does not actually require driver skill to successfully overtake a competitor, therefore it would not be overtaking.
The rear wing of a modern Formula One car, with three aerodynamic
elements (1, 2, 3). The rows of holes for adjustment of the angle of
attack (4) and installation of another element (5) are visible on the
wing's endplate.
Wings
Front and rear wings made their appearance in the late 1960s. Seen here in a 1969 Matra Cosworth MS80. By the end of the 1960s wings had become a standard feature in all Formula cars
A low downforce spec. front wing on the Renault R30
F1 car. Front wings heavily influence the cornering speed and handling
of a car, and are regularly changed depending on the downforce
requirements of a circuit.
The F1 cars for the 2009 season came under much questioning due to the design of the rear diffusers of the Williams, Toyota and the Brawn GP cars raced by Jenson Button and Rubens Barrichello, dubbed double diffusers. Appeals from many of the teams were heard by the FIA, which met in Paris, before the 2009 Chinese Grand Prix and the use of such diffusers was declared as legal. Brawn GP boss Ross Brawn claimed the double diffuser design as "an innovative approach of an existing idea". These were subsequently banned for the 2011 season. Another controversy of the 2010 and '11 seasons was the front wing of the Red Bull cars. Several teams protested claiming the wing was breaking regulations. Footage from high speed sections of circuits showed the Red Bull front wing bending on the outsides subsequently creating greater downforce. Test were held on the Red Bull front wing however the FIA could find no way that the wing was breaking any regulation.
Since the start of the 2011 season, cars have been allowed to run with an adjustable rear wing, more commonly known as DRS (drag reduction system), a system to combat the problem of turbulent air when overtaking. On the straights of a track, drivers can deploy DRS, which opens the rear wing, reduces the drag of the car, allowing it to move faster. As soon as the driver touches the brake, the rear wing shuts again. In free practice and qualifying, a driver may use it whenever he wishes to, but in the race, it can only be used if the driver is 1 second, or less, behind another driver at the DRS detection zone on the race track, at which point it can be activated in the activation zone until the driver brakes.
Ground effect
A rear diffuser on a 2009 Renault R29. Rear diffusers have been an important aerodynamic aid since late 1980s
A substantial amount of downforce is provided by using a rear diffuser which rises from the undertray at the rear axle to the actual rear of the bodywork. The limitations on ground effects, limited size of the wings (requiring use at high angles of attack to create sufficient downforce), and vortices created by open wheels lead to a high aerodynamic drag coefficient (about 1 according to Minardi's technical director Gabriele Tredozi;[17] compare with the average modern saloon car, which has a Cd value between 0.25 and 0.35), so that, despite the enormous power output of the engines, the top speed of these cars is less than that of World War II vintage Mercedes-Benz and Auto Union Silver Arrows racers. However, this drag is more than compensated for by the ability to corner at extremely high speed. The aerodynamics are adjusted for each track; with a low drag configuration for tracks where high speed is more important like Autodromo Nazionale Monza, and a high traction configuration for tracks where cornering is more important, like the Circuit de Monaco.
Regulations
The front wing is lower than ever before.
A ban on aerodynamic appendages resulted in the 2009 cars having smoother bodywork.
Steering wheel
A 2012 Lotus F1 wheel, with a complex array of dials, knobs, and buttons.
Fuel
The fuel used in F1 cars is fairly similar to ordinary petrol, albeit with a far more tightly controlled mix. Formula One fuel can only contain compounds that are found in commercial gasoline, in contrast to alcohol-based fuels used in American open-wheel racing. Blends are tuned for maximum performance in given weather conditions or different circuits. During the period when teams were limited to a specific volume of fuel during a race, exotic high-density fuel blends were used which were actually heavier than water, since the energy content of a fuel depends on its mass density.To make sure that the teams and fuel suppliers are not violating the fuel regulations, the FIA requires Elf, Shell, Mobil, Petronas and the other fuel teams to submit a sample of the fuel they are providing for a race. At any time, FIA inspectors can request a sample from the fueling rig to compare the "fingerprint" of what is in the car during the race with what was submitted. The teams usually abide by this rule, but in 1997, Mika Häkkinen was stripped of his third-place finish at Spa-Francorchamps in Belgium after the FIA determined that his fuel was not the correct formula, as well as in 1976, both McLaren and Penske cars were forced to the rear of the Italian Grand Prix after octane number of the mixture was found to be too high.
Tyres
Main article: Formula One tyres
Bridgestone Potenza F1 front tyre
Tyres can be no wider than 355 and 380 mm (14.0 and 15.0 in) at the rear, front tyre width reduced from 270 mm to 245 mm for the 2010 season. Unlike the fuel, the tyres bear only a superficial resemblance to a normal road tyre. Whereas a roadcar tyre has a useful life of up to 80,000 km (50,000 mi), a Formula One tyre does not even last the whole race distance (a little over 300 km (190 mi)); they are usually changed two or three times per race, depending on the track. This is the result of a drive to maximise the road-holding ability, leading to the use of very soft compounds (to ensure that the tyre surface conforms to the road surface as closely as possible).
Since the start of the 2007 season, F1 had a sole tyre supplier. From 2007 to 2010, this was Bridgestone, but 2011 saw the reintroduction of Pirelli into the sport, following the departure of Bridgestone. Seven compounds of F1 tyre exist; 5 are dry weather compounds (hard, medium, soft, super-soft and ultra soft) while 2 are wet compounds (intermediates for damp surfaces with no standing water and full wets for surfaces with standing water). Two of the dry weather compounds (generally a harder and softer compound) are brought to each race, plus both wet weather compounds. The harder tyre is more durable but gives less grip, and the softer tyre the opposite. In 2009, the slick tyres returned as a part of revisions to the rules for the 2009 season; slicks have no grooves and give up to 18% more contact with the track. In the Bridgestone years, a green band on the sidewall of the softer compound was painted to allow spectators to distinguish which tyre a driver is on. With Pirelli tyres, the colour of the text and the ring on the sidewall varies with the compounds. Generally, the two dry compounds brought to the track are separated by at least one specification. This was implemented by the FIA to create more noticeable difference between the compounds and hopefully add more excitement to the race when two drivers are on different strategies. The exceptions are the Monaco GP, Singapore Grand Prix and the Hungaroring, where soft and super-soft tyres are brought, because they are notably slow and twisty and require a lot of grip.
Brakes
Brake discs on the Williams FW27.
An average F1 car can decelerate from 100 to 0 km/h (62 to 0 mph) in about 15 meters (48 ft), compared with a 2009 BMW M3, which needs 31 meters (102 ft). When braking from higher speeds, aerodynamic downforce enables tremendous deceleration: 4.5 g to 5.0 g (44 to 49 m/s2), and up to 5.5 g (54 m/s2) at the high-speed circuits such as the Circuit Gilles Villeneuve (Canadian GP) and the Autodromo Nazionale Monza (Italian GP). This contrasts with 1.0 g to 1.5 g (10 to 15 m/s2) for the best sports cars (the Bugatti Veyron is claimed to be able to brake at 1.3 g). An F1 car can brake from 200 km/h (124 mph) to a complete stop in just 2.9 seconds, using only 65 metres (213 ft).[19]
Performance
Every F1 car on the grid is capable of going from 0 to 160 km/h (100 mph) and back to 0 in less than five seconds. During a demonstration at the Silverstone circuit in Britain, an F1 McLaren-Mercedes car driven by David Coulthard gave a pair of Mercedes-Benz street cars a head start of seventy seconds, and was able to beat the cars to the finish line from a standing start, a distance of only 3.2 miles (5.2 km).[20]As well as being fast in a straight line, F1 cars have outstanding cornering ability. Grand Prix cars can negotiate corners at significantly higher speeds than other racing cars because of the intense levels of grip and downforce. Cornering speed is so high that Formula One drivers have strength training routines just for the neck muscles. Former F1 driver Juan Pablo Montoya claimed to be able to perform 300 repetitions of 50 lb (23 kg) with his neck.
The combination of light weight (642 kg in race trim for 2013), power (900 bhp with the 3.0 L V10, 780 bhp (582 kW) with the 2007 regulation 2.4 L V8), aerodynamics, and ultra-high-performance tyres is what gives the F1 car its high performance figures. The principal consideration for F1 designers is acceleration, and not simply top speed. Three types of acceleration can be considered to assess a car's performance:
- Longitudinal acceleration (speeding up)
- Longitudinal deceleration (braking)
- Lateral acceleration (turning)
Acceleration
The 2006 F1 cars have a power-to-weight ratio of 1,250 hp/t (0.93 kW/kg). Theoretically this would allow the car to reach 100 km/h (60 mph) in less than 1 second. However the massive power cannot be converted to motion at low speeds due to traction loss and the usual figure is 2 seconds to reach 100 km/h (60 mph). After about 130 km/h (80 mph) traction loss is minimal due to the combined effect of the car moving faster and the downforce, hence continuing to accelerate the car at a very high rate. The figures are (for the 2006 Renault R26):[citation needed]- 0 to 100 km/h (62 mph): 1.7 seconds
- 0 to 200 km/h (124 mph): 3.8 seconds
- 0 to 300 km/h (186 mph): 8.6 seconds*
The acceleration figure is usually 1.45 g (14.2 m/s2) up to 200 km/h (124 mph), which means the driver is pushed by the seat with a force whose acceleration is 1.45 times that of Earth's gravity.
There are also boost systems known as kinetic energy recovery systems (KERS). These devices recover the kinetic energy created by the car's braking process. They store that energy and convert it into power that can be called upon to boost acceleration. KERS typically adds 80 hp (60 kW) and weighs 35 kg (77 lb). There are principally two types of systems: electrical and mechanical flywheel. Electrical systems use a motor-generator incorporated in the car's transmission which converts mechanical energy into electrical energy and vice versa. Once the energy has been harnessed, it is stored in a battery and released at will. Mechanical systems capture braking energy and use it to turn a small flywheel which can spin at up to 80,000 rpm. When extra power is required, the flywheel is connected to the car's rear wheels. In contrast to an electrical KERS, the mechanical energy does not change state and is therefore more efficient. There is one other option available, hydraulic KERS, where braking energy is used to accumulate hydraulic pressure which is then sent to the wheels when required.
Deceleration
The carbon brakes on a Sauber C30
There are three companies who manufacture brakes for Formula One. They are Hitco (based in the US, part of the SGL Carbon Group), Brembo in Italy and Carbone Industrie of France. Whilst Hitco manufacture their own carbon/carbon, Brembo sources theirs from Honeywell, and Carbone Industrie purchases their carbon from Messier Bugatti.
Carbon/carbon is a short name for carbon fibre reinforced carbon. This means carbon fibres strengthening a matrix of carbon, which is added to the fibres by way of matrix deposition (CVI or CVD) or by pyrolysis of a resin binder.
F1 brakes are 278 mm (10.9 in) in diameter and a maximum of 28 mm (1.1 in) thick. The carbon/carbon brake pads are actuated by 6-piston opposed callipers provided by Akebono, AP Racing or Brembo. The callipers are aluminium alloy bodied with titanium pistons. The regulations limit the modulus of the calliper material to 80 GPa in order to prevent teams using exotic, high specific stiffness materials, for example, beryllium. Titanium pistons save weight, and also have a low thermal conductivity, reducing the heat flow into the brake fluid.
Lateral acceleration
The aerodynamic forces of a Formula 1 car can produce as much as three times the car's weight in downforce. In fact, at a speed of just 130 km/h (81 mph), the downforce is equal in magnitude to the weight of the car. At low speeds, the car can turn at 2.0 g. At 210 km/h (130 mph) already the lateral force is 3.0 g, as evidenced by the famous esses (turns 3 and 4) at the Suzuka circuit. Higher-speed corners such as Blanchimont (Circuit de Spa-Francorchamps) and Copse (Silverstone Circuit) are taken at above 5.0 g, and 6.0 g has been recorded at Suzuka's 130-R corner.[21] This contrasts with a maximum for high performance road cars such as Enzo Ferrari of 1.5 g or Koenigsegg One:1 of above 1.7 g for the Circuit de Spa-Francorchamps.[22]The large downforce allows an F1 car to corner at very high speeds. As an example of the extreme cornering speeds; the Blanchimont and Eau Rouge corners at Spa-Francorchamps are taken flat-out at above 300 km/h (190 mph), whereas the race-spec touring cars can only do so at 150–160 km/h (note that lateral force increases with the square of the speed). A newer and perhaps even more extreme example is the Turn 8 at the Istanbul Park circuit, a 190° relatively tight 4-apex corner, in which the cars maintain speeds between 265 and 285 km/h (165 and 177 mph) (in 2006) and experience between 4.5 g and 5.5 g for 7 seconds—the longest sustained hard cornering in Formula 1.
Top speeds
Away from the track, the BAR Honda team used a modified BAR 007 car, which they claim complied with FIA Formula One regulations, to set an unofficial speed record of 413 km/h (257 mph) on a one way straight line run on 6 November 2005 during a shakedown ahead of their Bonneville 400 record attempt. The car was optimised for top speed with only enough downforce to prevent it from leaving the ground. The car, badged as a Honda following their takeover of BAR at the end of 2005, set an FIA ratified record of 400 km/h (249 mph) on a one way run on 21 July 2006 at Bonneville Speedway.[26] On this occasion the car did not fully meet FIA Formula One regulations, as it used a moveable aerodynamic rudder for stability control, breaching article 3.15 of the 2006 Formula One technical regulations which states that any specific part of the car influencing its aerodynamic performance must be rigidly secured.[27]
Technical specifications (2011–2013)
Chassis
- Construction: Carbon-fibre and honeycomb composite structure
- Gearbox: 7-speed semi-automatic paddle shift sport gearbox, longitudinally mounted with hydraulic system for power shift and clutch operation
- Weight: 642 kg (1,415 lb) including driver
- Fuel capacity: Approx. 150 L (40 US gal; 33 imp gal)
- Length: Averaging 4995–5240 mm (197–206.4 in)[28]
- Width: 1,800 mm (71 in)
- Height: 950 mm (37 in)
- Wheelbase: 2995–3400 mm (118–134 in)
- Steering: Power-assisted rack and pinion steering
- Brakes: 6-piston (front and rear) carbon callipers, carbon discs and pads
- Brake disc size: 278 x 28 mm (front and rear)
- Dampers: Vendor chosen by each manufacturer. Four way bump and rebound adjustable
- Springs: Vendor chosen by each manufacturer
- Front and rear suspension: Aluminium alloy uprights, carbon-composite double wishbone with springs and anti-roll bar (FRICS) front and rear interconnecting suspension system removed due to questionable legality on all cars late in the 2013 season.
- Wheel rims: Forged aluminium or magnesium wheels
- Front wheel size: 12 x 13 in
- Rear wheel size: 13.7 x 13 in
- Tyres: Pirelli P-Zero slick dry and Pirelli Cinturato treaded intermediate-wet tyres
- Front tyre size: 245/660 - R13
- Rear tyre size: 325/660 - R13
- Safety equipment: 6-point seatbelt, HANS device
Engine
Main article: Formula One engines
- Manufacturers: Renault, Ferrari, Mercedes-Benz and Cosworth
- Configuration: V8 naturally aspirated engine
- V-angle: 90° cylinder angle
- Displacement: 2,400 cc (2.4 L; 146.5 cu in)
- Bore: Maximum 98 mm (4 in)
- Valvetrain: DOHC, 32-valve, four valves per cylinder
- Fuel: 94.25% 102 RON unleaded gasoline + 5.75% biofuel
- Fuel Delivery: Indirect fuel injection
- Aspiration: Naturally aspirated
- Power Output: 750–830 hp (559–619 kW) @ 18000 rpm depending on KERS mode
- Torque: Approx. 240 N·m (177 ft·lb)
- Lubrication: Dry sump
- Maximum Revs: 18,000 rpm
- Engine management: McLaren Electronic Systems TAG-320 (since 2013)
- Max Speed: 360 km/h (224 mph)
- Cooling: Single water pump
- Ignition: High energy inductive (laptop/coil controlled)
Technical specifications for 2014
Engine (majors)
1.6-litre V6 turbo engine and two Energy Recovery Systems (ERS) with ~750 hp.[29]- Exhaust: Single exhaust with central exit
Chassis
- Fuel capacity: 150 L (40 US gal; 33 imp gal) according to FIA Formula One regulations, 100 kg is equivalent to 130–140 L (34–37 US gal; 29–31 imp gal) per race
- Gearbox: 8-speed, fixed ratio
- Front downforce wing: Width of wing reduced from 1,800 mm to 1,650 mm
- Rear downforce wing: Shallower rear wing flap and abolition of beam wing
- Car weight: Minimum weight increased by 49 kg, up from 642 kg to 691 kg
- Height: Nose and chassis height reduced (the height of the chassis has been reduced from 625 mm to 525 mm, whilst the height of the nose has been dramatically slashed from 550 mm to 185 mm).
Technical specifications for 2015
Engine (majors)
- Intake Variable length intake system
Chassis
- Length: 5010-5100 mm (Red Bull/Toro Rosso), 5180 mm (Mercedes/Force India), 5130 mm (Ferrari/Sauber/Lotus), 5000 mm (Williams/McLaren/Manor)
Recent FIA performance restrictions
The Williams FW14-Renault and its successor Williams FW15,
considered among the most technologically advanced racing cars ever
built, won 27 Grands Prix and 36 pole positions in the early 1990s,
until the active suspension and accompanying electronic gadgetries were
outlawed by FIA in 1994
See also: Formula One regulations and History of Formula One regulations
In an effort to reduce speeds and increase driver safety, the FIA has
continuously introduced new rules for F1 constructors since the 1980s.
A wider 1979 McLaren M28
A much narrower 2011 Red Bull RB7
In 2008, the FIA further strengthened its cost-cutting measures by stating that gearboxes are to last for 4 grand prix weekends, in addition to the 2 race weekend engine rule. Furthermore, all teams were required to use a standardised ECU supplied by MES (McLaren Electronic Systems) made in conjunction with Microsoft. These ECUs have placed restrictions on the use of electronic driver aids such as traction control, launch control and engine braking. The emphasis being on reducing costs as well as placing the focus back onto driver skills as opposed to the so-called 'electronic gizmos' mainly controlling the cars.
Changes were made for the 2009 season to increase dependency on mechanical grip and create overtaking opportunities - resulting in the return to slick tyres, a wider and lower front wing with a standardized centre section, a narrower and taller rear wing, and the diffuser being moved backwards and made taller yet less efficient at producing downforce. Overall aerodynamic grip was dramatically reduced with the banning of complex appendages such as winglets, bargeboards and other aero devices previously used to better direct airflow over and under the cars. The maximum engine speed was reduced to 18,000 rpm to increase reliability further and conform to engine life demand.
A 2010 Sauber C29
No comments:
Post a Comment